Main pageNew articles & Tasks
The Energy Portal
Welcome to Wikipedia's Energy portal, your gateway to energy. This portal is aimed at giving you access to all energy related topics in all of its forms.
Page contents: Selected articleSelected imageSelected biographyDid you know?General imagesQuotationsRelated portalsWikiprojectsMajor topicsCategoriesHelpAssociated Wikimedia

Introduction

A plasma globe using electrical energy to create plasma, light, heat, movement and a faint sound

Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutually exclusive.

All living organisms constantly take in and release energy. The Earth's climate and ecosystems processes are driven primarily by radiant energy from the sun. The energy industry provides the energy required for human civilization to function, which it obtains from energy resources such as fossil fuels, nuclear fuel, and renewable energy. (Full article...)

Selected article

Nuclear power is the controlled use of nuclear reactions to release energy for work including propulsion for ships and submarines, and for the generation of electricity. Nuclear energy is produced by a controlled nuclear chain reaction and creates heat which is used to boil water, produce steam, and drive a turbines.

Nuclear (fission) power stations, provided 11% of the world's electricity in 2012, somewhat less than that generated by hydro-electric stations at 16%. Nuclear energy policy differs between countries, and some countries have no active nuclear power stations, or have phased them out. The first nuclear generated electricity, used to power four 200-watt light bulbs, was produced at the EBR-I reactor near Arco, Idaho, in 1951. This was followed in 1954 by the first grid-connected plant (in the USSR), and in 1956 by the first commercial plant (in the United Kingdom).

During the last decades of the 20th century, concerns about nuclear waste, nuclear accidents, radiation and nuclear proliferation led to an anti-nuclear movement. The 1979 Three Mile Island accident, the 1986 Chernobyl disaster, and the 2011 Fukushima disaster also played a part in stopping new plants in many countries, while the economics of nuclear generation and of nuclear decommissioning have also been factors. Despite this, some countries including China and India have continued to remain active in developing nuclear power, Germany will close its 19 nuclear plants by 2020, and is investing heavily in renewable energy commercialization instead.

Selected image

Did you know?

An incandescent light bulb
An incandescent light bulb
  • Saudi Aramco is the largest oil corporation in the world and the world's largest in terms of proven crude oil reserves and production?

Selected biography

{{{caption}}}
Michael Faraday (17911867), an English chemist and physicist, is credited with the discovery of electromagnetic induction, which formed the basis for exploiting electricity as a practical form of energy. His discovery paved the way for the development of generators, induction motors, transformers, and most other electrical machines.

In 1831, Faraday began his great series of experiments in which he discovered electromagnetic induction. He established that a changing magnetic field produces an electric field, a relation mathematically modelled by Faraday's law. Faraday later used the principle to construct the electric dynamo, the ancestor of modern power generators. He went on to investigate the fundamental nature of electricity, concluding in 1839 that, contrary to opinions at the time, only a single "electricity" exists, and the changing values of quantity and intensity (voltage and charge) would produce different groups of phenomena.

Some historians refer to Faraday as the best experimentalist in the history of science. Despite this his mathematical ability did not extend so far as trigonometry or any but the simplest algebra. He nevertheless possessed the ability to present his ideas in clear and simple language. During his lifetime, Faraday rejected a knighthood and twice refused to become President of the Royal Society.

In the news

1 May 2025 – Ukraine–United States relations
The United States and Ukraine sign the Ukraine–United States Mineral Resources Agreement to share profits from the future sales of Ukraine's mineral and energy reserves. (BBC News)

General images

The following are images from various energy-related articles on Wikipedia.

Quotations

WikiProjects

Major topics

Help

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page.

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache